'%3E%0A%3Cpath fill-rule='evenodd' d='M0 825.2H1100.2V0H0V825.2Z' class='g0'/%3E%0A%3Cimage preserveAspectRatio='none' x='507' y='-166' width='864' height='1555' href='data:image/png%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAAA2AAAAYTCAMAAACiwqteAAADAFBMVEUAAAAAJxRdZhQAZy8ALwIAiLcMIqintyVERgASMWQAM20KHkMAACh%2BvBIAYCsYPnsAms8AKjEAdTZNwQsAjLUOJ02erSEAB3sBO80BewSyxSovNAsADAUAaYwjJgYAZi4AORoAjLgAd0PLzg7H0RgAP1d8iBljZgMAm9EYPnwAdjgAXzEAapAGrRcAjL0AYm0AAU0QEQOgsCSvxiUAaUITNGcAwt2wtg4AQh8AnK0AcDQBUwOIlh8AfUWmqwUCKeEAGgEBBMoAKUsSNGsAcNcAi7cAYSsTOG0AGiAHEyZcyRUARmGsuyQAl84AkM0E2gZ8iRt6egANKloA4OmruSIACxIAb5UAGj9VWAAAPxoAb5QAAwevwCc1NwGJjwUAOUsAUGkAe6kAl8wAdDUAURcAZ4kIFy4OOGoPKlcAe6cAUCWn9im0xixlbxcAcTRIUBAZQH0AeDkKIWUAntQVNYwAcTOxxSUKGzUDUG0AnNUUOnMAVXEAl84AMhf3%2BVEAWCEAu9/i6RcCToEAm8wWPHgAUVLB0iGepA20xSqXpx4BDKIAn88%2B5Q%2BMlw0AeDe0xSoTO3MVPYgAntQAndIFG1eeriIAdjMADSITMnEWOokAndIaHAQXQHoAFwoSQJAAlMiElR9fZxO8zCUAnc6xwikAwOEALz0AkysAgogAeqYNLG1zexRPVw8AeDiyxSoAQVgAki3p7AULKEsAs9wAh0OyxSmwwygAHS0Aby8XPnq2yCoAUyWeuB9sdhdDSA0qMAgECxcAn%2BAAcMey0TIAFhi4yCq0xSyxwycASR8AdjcAT%2BQAUia0xSoICQEWPXoApNQAdTYDnwcAhiyO0CEVO3gAdjgAneEAntGJlhsWPnwAoNO0xiwAnNIYPnwKHD8Aob0AndIAlcIARB6uvSUYQHwQMGIAntQSOnYAXHqvwClUVCoAFPFNVRI1OgxhdxoAeDgAKQ8AUGoAryAAe6kAdjgGECKyxSoAur8AHw4AJSUMKFCcriMYQHwIGjSJlx0BBA/ku3/bAAABAHRSTlMAKS2LBI0%2BqQKODS0BLzDMxgXJEDFMbAMTB%2B8rBC4JbiptbBVPLjAF4e7tEU0wpgkBAovBUaUqME0NqwZxMAsqAgcHb1RNTk8GJkgMcG2SC0oDMhBPA2wJAg%2BJAY0DDgwtElFxKhMRL2oxbAvyTY0p8O9L8mdRqU5oE45MsA8QEm82DJCuAmsu0k0HwS8myO5wh9XuExenBBeq0AbLCTczFxOJsq1KCXYHTy4SDrGwEIUPMIgNkXEIM5DsTlIuDgYNaA2iAqWtURGSQC%2BxAXKrsApSelGvTHJMr7bRj7ETVLJyLzLSTrMvLMoBEk4LDdIKEkpqzg7NCAsAFTGyLDEC6S91uAAATflJREFUeNrt3X98VNWd8PFBRFQoP1zAFYdfbdGZgVVD2i7%2BqEtBfj38KFIi0omCRBB8ruHe3gYrwmMr0Q5mTTCjwSahQLGpCJGVbgIZhKR9%2BJWSgO5CEYjIj8Ef2%2BJAhRQhkAfbp7uPycy9596ZyT5z7uf955yTc87rHr7ce8499xyXCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPjvt6fKbyX7HXvnCuXbOb/ESrGLirrQFZDRSbXGUv68DmIBFrIUYNN8BBikdE59zFL%2BhoUEGCCsJrzHUv4JxULZfqIQYMAXgzBvhpXsgz0iufwEGPAXR9SxVrKv158VyfYVi4%2BI2m56AlLyq6OtZO%2BurxDI5f5ni3cwjTsYJA2wpipL%2BYuPieS62WqAPUNPQE6j1c5WsjccGpP4ANtFgEFWGeolK9kneLYlPsCOazfREZBU16VWcq/Qk3AHG%2BqjGyCr65qs5L6knxPIZXGSY2iEboCselp6E7ZR3yCQy%2BJ7sMfP0g2Q1XR1soXcYvP0VgMsn26ArOqbFli5gwUnCOSaUmApwLLL6QZI66VSC5kzjjYI5LK42Le2iF6AtJ4M32gh94Fu0wUCzNodbH8tvQBpHbH0ycrMYJl5pkprd7DybHoB0rqxdISF3E/pIgH2iaUWnH2cXoC8qrpa2DfALTJPX2EtwCJD6QRIPAjzJjzAOlqp/2rtOJ0AeY1Vp4pHmD%2B4wW2aqS7TSv3PaLvoBMhrmXefy0KAzTTP1DjeSv1dtPN0AiR20MI3Ye7CA6Z51h2eYqX6fqyUgtT2Wdi8zX/I/E3z1tAJK9W3f4cugNyDMAsbc9y22PwOprxipfobsugCyKxG7SSeuUOeaZZ51gIs8lW6ADLLsDLLMaD4WfMAW2elel87ugAy8%2BdamOUY6bnRbJ7%2BjyErtZ/W%2BtMFkNrScLNw3h76cLMsfwxYqTzHN4wegNReVmcL531EP2OWpZelAKtlEhGys7C11FP6DLMsmekWqnZHmESE7MIWtpYyD7DtQyxUvVwb5acDILdSC4esBE0D7JN7LAUYk4iQnZW92zxPm2S4teA9C1V30ZZz/SG5k2F/4gLsU2WlhaqzfKe5/pDcZPWCcN5CswDbotwvXvPpfOY4IL3p3g3iAfYjkwxPWJmlP61t4vJDeuEfCmctNguwIVZm6dtx8AMc4P0FiQuw16x8z5zjY5Ie8qs6KB5gPzZZi9jYy0LFRXdx8SG/OeLb%2B3b7jfE95%2BGCLeL1Xu0bxcWH/HqGxe9gJgG2UlklXm9/7TkuPuS3Qd0oHGADjNPvOVwtXm8/jgaDExxRX01UgA3ZYWUIxrkPcEaACZ8SZjaLGKgUr9Yd2cy1hxOE5/gTE2Aloa%2BL17qbPUfhDE3XieY0WSp1b8E88Vrbc7YlnKHqm6I5TRb77gylidca6ceVhzMCrDQxAZb2ZoV4pdPY7wYOsbSraE7jDy5LlJ3ilWZF%2BFQFzvCk8Jtm4y0D%2BipfE66T7TjgnADzCmb8nnGAnVD6igcYuwWAO1gLJtu2VTTWiz8h%2Bji3CA5xSRXM2EM32jp7a4H4EMzt4wkRzgmw4WIZRwbvMEi9OSS%2B0re/tojrDgLsywZ0M1r/vjMk/v1kls/NdYdDzFafFcvY4UODxLTtHYWHYOd9OVx2OCfAxJbT%2B1cbnXB5a%2B8lwjV%2Bg80CQIC1CjDDM5qfKBCfpGezADgqwD4SCzDPTIPUzDrhCvtru7nq4A7WgjtotIOihf1u2uezXxu4g7XUrBsE2C2K8H43bhbSw1EB5hULsB769NiJFrYc7aJN46LDOTYK3sFmesoMnhDFdwu4oZaXYGAM1krDoYyYaZ8qV4lWV6YN5ZqDMVhLnxfHnqWvHx8oEa0uh0OLwB0sypOkHnuWPi00XrQ21vmCAIvmkn4uZtpbys2itZ3nSzAQYFGsMAiwytBDorVl%2BTg3Fo5ySb1eJNsEz5hYSdXin4INY68AOC7Apopk27uwOVbSVco60craaYNY6AuHBZhIrpc9KwyeEIU3ROTUPTiN2KY3A/XXYyWlhd4WroyF9HBcgAltevOBJ2bSH0NvidY1zdeFCw4CrLWGozGTMsXXIQ71Xc0Fh7O8JLKz7%2B2Fn8VKujb0nvC4KosjH%2BA0uSKHP3ysPxIraUloq3Bd5e253nCW5lKR88F%2BXBwzaft84RvYuz5O3YPDHFEfE8h1dGKslLTA88J17eZTMDjNBvWCeabXg0/Huk0t6b1WuK7Hz3K94TBzROY41njGxUqq2y5e1zu1XG84zHVNApkOxd4SMfSEeF2Rx7necJimBeZ5yoKDYyWdUMTnEE/7%2BnO94SwZ3p7mmWYGY%2B13U//mDvG6BnFuLJzmgsAcx7bCmE%2BIfZUp4nWxWwAcZ0TY/C3Wudg7Il60cKylq3051xsOk1tlnudA8PNYSZmHxQPMz8eWcBzvNaZZpgdjbnezLiR%2BrKXL7fs3rjecZZl6yTTPyOCdsZLmKfdaCDBtN19bwln2eceYZck4ujBmXIwPWKhrORtKwWGau5oPwWbEXkjvqhtiobJBBBgcpkZgpW9DXvdYSauUyxYq26Sd54rDUS6pY82yzNJHxkz7HwXVFirL8RFgcJY93mazLB26xT5UJfM1K5VlsZYezjImvMcsy0bPZ7ET0zOtTAvW7ueKw1HGmm/qOyD2hyquT0O3WKmtnI9V4Cz7TLdEzPBMiJ142cK3llecZSEHnOVgrlmOFbrBPe6eT6xUNsyXwxWHk8z2mk3STy1u2BY79ZNMK7UtJ8DgLD293U1yzNA/NkgN/NFKbed9m1gpBSepMtstIGNvt9jnMrve6j3PUoBpBBgcJTzHJMN6vYdB6sWCdRYDjEsOB5msvmySo0NxZ4PUXofTCDAglgVmT4jTCwcYJXfc7iLAgJhPiEtNMqzxrDdITQtUEmBALOfUTsYZOh%2BaaJScplxFgAGxjDA7F%2BwRwzn6KwF2s7UA4z0YHMRvutC3QzfDpfZvWQyw5RECDA4KMNPdOAqPGSa/YjHAXGwqBQfZp54zzvD3%2Bs8N008op6zVmE%2BAwTE6N1V1NlxYse1AofFCqp2hamtV7udzFTjGObPdOMYEJxhnqAyUWKuylo194RiT1RrjDLP1P5gEWKPFKrMiXHY4RVXYZDeOmfps4wwVb1qskk1v4BjLvPtMcjTkbTPOsH27xToHsW0bnOKSutE4g8GG9P/XmxUW63yGjUfhFEvNlnFM158yyVFnNcDcBBic4n2zg2NPBt2JD7Bvu7nycIKp6mSTHDM9roQHGIsR4RA9vRkmORryzMrYYTXAXDdkc%2BXhCKa7cbj2TjTbQGP7fKu1coQsHKJ0hEmGjOLPzMqoqLNa6yZtEZceDpChbjDJcbtnpFkhlldyuAZp/bn2cIDJZm/BXGf0uaYBFjhltV7fUK49HMB0uxvDYy3/L8ur6V2u/H5ceziA%2BalFM4LPmWU50dvyHaz9O1x7OID3B2bn7j1t%2BhrM9YpiOcAej7AaEfJ71nS3ANfThaal3Gt1y4AvViPu5upDevu8ZnMcrh8Vm5ZSYj3AXJHHufqQXtVBVwICLM1GgNUyCIP0mlXTOQ7XgTzzAAtVWq56qK%2BM6w/J1Zht6XvF4qPm5XS0vBjRNU3rwvWH9AE21jRPg0CAjW/sa7nuctb7QnYzzPa7EQwwi%2BeD/cVXfVx/SG6fSIB9aF7Ow8o8y3W30wbRAZDbnnCGaR6BSQ6XP/RHy3X789l9FJKrampOSIC5Gv/deuU52nJ6AFJrqjLPM6CbQEFD6qxXvpzFHJBcqflrMJEXzS7Xe6GHLVfujvCMCLmZ7jnqElqL6HKtVdZar53PmiE5VSTAPAIF1QfusV672/cnugASO6d%2BZJ5phv6cQFHzO9qo/50i%2BgASmy0SYGfMv2i%2B4p5PbNTfRZtGJ0DmO9irAgEWnOs3z3WVstJGA/hmBXLfwQQCbFzxZwIBdmugl40GtM9nB204PMBce38tUlZmuo0G7GJJPZw%2BBnM1iLwIc/1EsdOC/ezwC5nHYCIB9rugSFlbla/YeNwbql1NN0BWG4UCbKD%2Bukhhdf87zXoLlkeyGIVBWiIrOVzT9RUiZU1R%2BtpoQY5GgEFaYYG1iK6ywgkiZfW1sfONy3Vey/HTD5CUyGp6l6tBZD29qzpQYacJ2T52IIWsBHZtu2KuvlEk286CrbZuYaPoB8gaYKXNArlm6x%2BLFLYuNMlOG4rKh9ERkNM%2Bb4ZArjFBoUGYq277QzbasEjbTEdATh8JbHrzxSDskEgcui4rq%2Bw04q79bB0AOQ0UC7Cn9OlCxQWet9OIXWwdAEmJbDz6l2fEkULF2VqPeGUUlk9PQNIA2yCUL69BKNta5bKdVvTXNtEVkNEy7x6hfJ8VdhfK9%2BZ8O624ujbCy2ZIKVfoTbPrEbGJetd7oVN2WtGOWxjktM%2B7TChftw5C2baGxttqRjZ7kEJKr6qzhfL9%2BpBYeTuVNDvNWK7l0BeQkfqkULY%2B%2BiyhfKeUt22tjs/ynaYvIKHwUqFs3YsfEJqHSKs4fK2dZgyLZNEXkNCCJrF8HbqJ5ftU2WKrHTlafzoD8pmsThXKN1B/Vihf/ZvptkZhLg4zgoy%2B4%2B0plO85j9iCX9dK5SpbDTnOBlOQUdMCsXwTPBliGet22GqHuzZCZ0A%2Bc8Ji%2BWYIziO6LtschT3KVD0kdEGdLJSvTPQZ0bXjNXst6acxVQ8JnxGvE8s3M1gmlvEqe0t%2BXct9tewwBemMEHxGfFb/nVjG%2B19Lr7fVkkFM1UM%2BYvtnu1wZxQ2CJc5TXrHXlPLILvoDsqkKNwvl66GPEyuwfn6gxFZL7vb1ozsgm07qBaF8ZYWfCZa4Splkrymj2D0A0skIV4ndwjrkiW3NceUW1tjXVlOGvfMO/QHZTFY7CeXrE%2BwjWOKDoSX2mtKfl2GQjl9w4wDX0b2iRVYEbrXXliwfn15CNqMFP7t82vOs4OYZaYFMe01ZHiknwiCZbWGxBYmvew6Ivgqe1HuVvbZ8l73qIZ2TXrFb2ASP6PZPp%2Bo62nxebe9bRIdAMqViu0sJnsX3hX9ULtpsyw1FPCRCMk8KvgtrKNwoWOKDFaFr7bXluI/TICCZGw92FXr4%2B4P%2BPdGHxGplp83GZGmD6BHI5ZL6mNAIqfjDOwRLrN9p60zZK9zlN9AhkEtzldBRYa4VwYGiRd7aWHHK3pbY/bUsPlyBZA%2BJqtjb5m4NwkVeDNlckugapR2nRyAV/2ixBVNrgh8Llznk8L12HxIjfN0MyZQeFHqgyxO/hd1qdz2Hy%2BXL5iERcrmgCu3gNlh/XXhk9YSy0mZjunByM2SzVD0ikGtMt4nCJZZs/6TeZmOyfdPoEUjlXGmu0C0sOE64yLVKpc3GnC8vp0cgl0vqaIFc3YsXi46P/P4pNjf6/eJUPs6DgGT2qOcEcs3Vy4RLTGus%2Bw%2BbjRnFZtqQzDZvk8DuARs9e58TLvLhArsPia5a7TxdAqk8q%2B4TyNVD/5Z4kUtsbqX9xU6kDMMgFX/zUu8lgWyHVt8hXOap1%2Brut9mcf4j8ij6BVG7MLRU4Fv0pfbB4kVeFetltzSg%2Bb4ZkjoRfMn%2BP7L4tb6N4kUuUU3Zb0z7CMAxyeVJkK%2B3bgz8WL/HuHaFqm41ZlH%2BWJVOQaxy2RxWYI5zg%2BY54kadsv252LdJqr6ZPIJOa0q41ppmeLZ4o/q1X2gnlPZuNGbaZYRhkG4Z595h/fPm0Lv7Ziqu%2BIrDWZmPcWXwbBslMFlhXv3FvN/H1HK4HD1dca7c1d%2BUz0QG5LPCabzL1uv57CyXeYvsh0TUtUsREB%2BRysKtpljEH9PUWShxv%2B9Mw13GNY8Mgl6lh8y9XthUvtlDi/a8dTrPZmGFDWfYLyWxQR5jOEs7VR1oocZWSaTfC3Nk%2BzpaFXPapG0zzdCiebqHEnyhP2G2Mu/ws22lDKs1V5hsIrC/sYKHE%2BszQp3ZbMyhSy0QH5NK11PQh8T79KSslNu6w%2B5DoekbrR4RBrntY2PTIFXdDcIyFEleGxttuzWa2mYJkJqtLTR8SgweslDhJ%2BYrdxmQw0QHZzPH%2B3CxLDytfhrn6ZgZW2W3M8qJId7oEUqnymk503FY8y0KB6xrrbC%2BOXxTZz8J6SGVb17DZ2bK3Fy62Mgz7mlJpe6JjF4euQDLNXtOJjj76YCuHFJ1QfmK7NZu0b/jpE8jkZdOJjuZjQSsPia75gXW2W9OPT1cgmZOmG7ndfuhQhoUCq%2B1vReo6XRthx3rI5aXwNSY5PtYnbLNQ4Bb7u0y5Tufnf06XQCZjcruabeT2e32GlRKXKBftnrniOu%2BrZRgGqZzzNpnkyFjoOWOlxCEFfW23ZreWw1QipPIH04kOf%2BFeKwVWHz5cbbs1OeyCA8l8pJ40ydHHc8xKgad6Zz5otzHuX/n%2BgS6BVBZ4zQ5IX6P3sFLgxQLbW3S4phWdXUSXQCaf55aaHBx2x2KPlR06XL0KttierDh9w110CaQyNXzQ5F1XWXHecxYKfHh7o/2JjnZaP6YSIZVL6h6THLP1A3dY%2BGe/LlBnfzYwR9tEl0AqPzA7v9m/Qh9p5b4yT/n3h2y3Jkt7lC6BTPxLvZNNsgzQ51oosGSKcovt1rjf4VwjSBZhVWGTwy9vX1xoZZeptIrQw7aHUotuKCfCIJXOpU01xjnW5%2BVZ%2Bej43fQ6%2BxMd03zZrOiAVKaGDzYb55ge3GtlYf3aUGaJ7db8g48NtSGXTqrZ55ed9AlWCtxi/0gIl%2BsbWg5dAqlco44wzuD%2BvaXttNMqQ2ttN8afxZb1kEvzPrOTw/zHglamEvvuCNh/SHRn%2B5ish1T8e0y3rJ/o6WOhwHdDFfYjzHVXhL0SIZcqr0mEvf5h8Ubx4upXKlPsN%2BbqG/LfpUsglYPhqcYZzhQXW5hKTHteucp%2BY6adzWdVIqSS0RQ2ybE%2BeNTCPSxtfmBtHBHme4fXYZDKka6lJq/DBuqLh4uX17fxtTha01%2Br5egwyBVhYbMlHd8KHrPw7cqLofFxPOcd17KJMEjlgrfKJMJG6j%2B%2BQ7y895QpafFE2Fd5SoRcEaZWmTwlDgiuES/u2kplXhyt2ax9lS6BVCabLZryT9BXiBdXkh7aGleEsSwRctmgVhmPmzIOWPk6rG/jjk/tj8Pco7R/42QjSKWnusf4bVdGg8dChL0YGBJHY9z9OGAWcuncU11qHGH%2B26xE2Hu9e8UTYVlEGCRzUh1hHGF33lYovizRv0Q5UR9Ha7iHQTb71BHG46bbV3tmCY%2Bsbh2vvBVPa7K0f2O2HjJp3me2af3wvZ5nm0WL61tXcCqO1vizOBYCcsm4Mg4zjp8zHxb%2BVri4U43p8UzWu3O0x7fRKZAswozHYbcfsjAO2xqYf208EbZZy2LVFGTiNp2tv/1QcR/hcdiLBZmn/HFFGOsSIRX/NWarpm5fXfiUcHFfL6hMi6c5XbRaxmGQygazVVPPrfbcKVzaCWVnXK05ruXTJZAswnKNH%2BuuX%2Bh5RLSw%2Bp3Kkrha0z8S4SkRUunkNTnbaP1C8TUd9ePjOJvvC4vORvrTJ5DqHhY%2BWGM8DttrYaupIaHLcbVmWlFkN30CmVww%2B8b5zgbx7RIf/kXoxfh2siliR1LIZWo4fL1xUCy2cIhzhfI/m%2BNqTjYH9EEuR5q81xtm8B8Q31Q7bUd8yxK/WFzPvvWQyrmfmRzQlzFB/7FoYVvrAvPii7Ac7Vd30ymQyI1VXuN96/0zxSNsXfonN8fXnByt/ed0CmSyQJ1jvJXUSH2x4AF9/k/fbNwaX2tG%2BWo5AxNSGeE1WZi4Irh4jPA9LNA3vta08%2BXzyhlSOamanIH5Pb1YOMIaQ2nxtea0z8c9DFL5J2/pMqP0mg2e4jLBsrY2Bk7F15rz%2Bb7%2B9AlkMjZcOtYww/Ti4r8Xj7AX44ywWt8o%2BgQymdoUHmiYYZz4wsQH6w7HN1vv2vUr9iSFXDp/Ux1tmGH9Yn2F4FKoB98MxDlb7%2Brny2IfAUhlqbrPOICO6TOFI6zg4Thbs0krmkafQCL%2B0WqV4Vyhf6Z%2BTLCsa7crP42zObt8NyyiUyBThD3mbZptmGGFfts4wXtYRcHlOJtzPp8vxCCXI13Dlwwz9Cg8JBhhrl%2BE3os3wmq1oRzlDJnMzvXOMMwwvZtnoNhZ6fcPCS2JszXLf6VlsRkOZJIxQt1jeNcoO6r/XizCXL2UKdVxNmcURzlDMj9XqwwHYtsahCcTdyqV8bZmkC%2BfyURI5Y1w1yNG6Rvv0yeKlVR/QhlybZytWZ7PVh2QbCDW5J1seI8aXLjwWbGiThT873XxRlittpmBGGRyboE6wnB5/dy84jNiRf1joG5rvBH2VXbWhlyW/dBkZ%2B0X8vRfdhYqamsg3sX1LlcXXxEfsEAm/le9pReM0jMW6zPFJhNPNSpv1cfZnF0RBmKQS3Op8W44GSNFpzr67lDifSHmchdpfMACqXSuMj6mr/tgz6HrhUqq/kWoV9wRlsVADJLdw36g5tYYZfi4uFhsZ%2B0H70lAhP3Jt5%2BBGKSyIVzaySj9kb3BwWIlvadUlMTbml03RNhaG3I9JuaqJw2nMiYGj4nthvNiqC7eF2KuYVcGYrwRg1T2qFWG75xH6nvFCvpuKLQq7tbkaEUMxCAT/8/V0u8YpGfM8IgdNevuuyO0Je6B2Le1SDs6BTKZXeo9aZR%2BJk9wN5zqTOXteF%2BIuU%2BXs%2BEU5HLjS94RRrsmvj4x%2BMBGoZLGK5lxT3UM%2B5XWfhidApmc9DadM0of4GkQ27z%2Bcu/t1XG3ZlQkn806INdjYlj9udHT3e88hRuFvhFbGQisjbs15yNaO2YTIZOaKnWPQbJ/erG%2BQqigtPS4N8O5MhKr1bLoE0hltLfJ6DPM4Qf0AULllPyi9/Npcbdms/bOLvbDgUwGNoUNT%2BpbE1wotOFUSS8ls2/crelS7jvOYyJkcm6Busdo9W%2BPboUDRf7Nl2wJvRb3qg7X8mwti5fOkMpJ70Gjx8Syo/oHQt%2BIrT18%2BJb4B2KjfOWs/oVULnRVrzEY%2Bnw%2BQW%2B4XaScW%2BcrF%2BNvzaAbNFb/QirNVeoCo/S5nuJZIuWkVSq94h%2BIubO0WgZikCrCrvGWvmyQPn1hcLDIv/m0Jcr8U/FH2FBf/nE6BRLxv9zk7WmwMqr7Mb1huEiEXdXY%2BNP4mzNtv2/zGHoFMlngrTJam9jHU/yxSDHrdoQSMBB7t59Wy1wHpPKRt%2BurBhP2v12o/17keMr/GKJUXht/azZFfI8yEoNMNr6v7rvD4DFypp73B5FyTihxb0t6xekiVk5BLsv2qbkGR0R0nlEs9JFY/c2BwLwENCfHV84Ce0jlUji8wSB5eoPeUCZQzKnX4j5F7Avtyn2b6RPIZHaVutQo/b7CvBUCQ6NT/66Mr4%2B/NeeztGzOOYJUThof6TxutT5T5EvnJQU71iWgNV18Z/vTJ5BJTVj9gdFHIzP1btMFirk/FFqVgJuYK5/ttSGXjD3qghdiJ/v/UBgcKVBMyXxlSgJa4%2B6nFdEnkErPcFejU1jKjukdBJb/VlcqmYlozXFOYYFkZucaHtZ3x%2BDCPIGz%2Bu6eFEhflYDWLCrSsobRKZBI8w/VqrGxnxJdG/P0Xwqs61jbGNryUPyt8ffz7WdrUkjlQjg82eBDy22L9QMi32FWKOPTEtCaXfm%2BTaycgkxeqFIXGMwmuufqq/8sUMxOZX4iWuPP0t5hMwFI9Zj4c7XrCwYh1qdY5DvMvleFGh9OQGvc7XyRTXQKZHKpyXvyjtghNn21R%2BSsvlWv9Z70YAJac7pW%2B5fTdApkslRdYLCuY1uD/rTA2sT6IaHnqxPRms2RfOY6IJU3wuGxBiOjBv0%2BkamOJQU7EhJhp8u1nKvpFMjDf65J3WcwEJug/0ZkM951odD/SkRz3Dla0SB6BRLJ2Kfmxl7eu%2B0D/VizQClbtytvJ6Q5XSKRXXQKZNIp3DX21qSf/16fILJBzd3jQ0NOJaI154u0b9AnkMm5972dYj4Ibvul/pnIV5iu9wJvJuILFtfyr2rZvHSGTJYtUC/Ffob8QP%2BlUCkvNgZ%2BkogvWFyjfOw5BbkGYlUGEeY6pvcRKuXUdmVKQiLsmUiEL50hk2ajCPM3BB8RKuWhnUrmfySiObvyfc/QKZDpHnYwHHumY9ve4u%2BIFXM5lP5pIprjriXCIJVzpQdjJ84qXLhNrJit6YEtiXhMXF6r8RkmZHIpbHAGSx99pmAxpyqUykR8weIu8nFEBGRyUo39GfPnE4IzBIupvieUWZKI9tzFK2fIpORnXoPzIbodvVH0BPNXeqd/mojTzvPP8j4M8vCfM1qWOCv4gXBJ96aHVibiKTHyDr0CiSJsj9fgOOcHgmdEC6q/MhB7PgGPibt9HBABidwYNthYu6y4g4XHzV5KZvzHzbo2a/3pFchjRLgmduKa4N9biLBbCna8Ev9D4v4IO3VAHlO9PWMnTu820UpZaxsDL8YfYVoOvQJ55Bq8bXZ9EKyxUtanO5T4j5vN0ThEDPLo6Z0aO7F7cIKFovz%2B6sr4pzrckfb0CqRxIXzSIHWCp8xSaWlvKxXxfoXZL8JWU5DHwW8aJF4v%2BN3Kf/nHQHqcETbMx/lGkMfSsEFiRnGDxeLqVzUGTsTXoux8egXSeNJrtMhpQOF0qwVu3d47vgg7rk2nWyCL2eqrBqmP6AMtLzIsqVR6xdOiq3lGhEwB9phRcuEH1lfx1k9R/v3aOJq0P5tugSyWhfcZJS9ssFPoktD8rfablBWhWyANo%2BWILtf382wV%2BpVAnf3JxKE%2BegXSKDUMsLnB222VGs90fTuNXoE0mhYYpc7SZ9kr9i2l7iHbAcZ29XDIHWxWsI/LboRl3mrvLxdpnMwHh4zBphcOtlvwxYJ77P3haQIM0jCZRXTZDzBXr9BlewEW4ZMVyGK29yPD9OIH7JddEagmwODwADNcyRFfgK0LzLezJ%2BmwCDtzQBaX1OuNA2xwHIX/xNYXmNPyCTDIE2DG6Z54AiytImBjJ5zTBBik8WTYMHl6XAHm2qqMt/5H5xmDQRpLjQNslv5xXMWPD1lflHjat8lPx0AOud80TO5jdyXH3wSs38JOawQYZBGeY5i8xvNCfOXfE7K8noOVHJDGEXWyYfr3P4yzgpLQ163%2BSTvtu3QM5NDTm2GYfmhxvDVk1lkPMPoFknjpfePhTuGP4q1hi7LW4l9s5nswyKLrCMPkO4MD461hXaPVHTr4ohmymKr2NEwf6RkXdx3jAxb/oKiIjoEcTnovGCU3L9zbHHcdfwxZ/IOz/egYyCG3yjC5xsIplzFtVaztkzhN60LHQA5e4yfEFcGy%2BOsoqcu0lH%2BojyPCIIeP1NmG6QcKxySglsoCSx%2Bt/IqtsyGHjK7GT4hlwZmJqOZFxdKZRvtr6RlIoUZ9wzD9n/TvJWJR4M3WAiyymZ6BFPaoNYbpDYXbElFNX8XK0bK7tV30DGQw22u838364EhXYgJsp4Xc7RmCQQ491c6G6Q8UjktMgIWsBNhZPmeGFDJKDff0dX1%2BaGJiKuobqBTPfF7rT9dAjhuY4SoOV584P2b%2BL40WAixH44hmSKG0yniK8OjCRNVUVyGc1e3jCRGOuIHNCn783xBg7/KECDmEXzJOv%2B3Qxv%2BGAMvSWCcFCfj3qUcMM6zXByessnThxYjneUKEFM6pxl9adt/brSxRdfUVn%2BToz3YckEKVd5lh%2BiW9R8Lqqhafpq%2B9ga6BBCarjxnfwD7s1jlhlfVVpgjmZMM2yPGAGM41zrAm%2BD1XAgPshOCa4X7sxgEZjPBONUy/vriDP5EBNk/sg7DTETYLgBQPiCeNMxzznElgdTcrgkesPO5bROcg5TWHjb%2BzdM3S1yRyc/ifCAaYOz%2BbzkHqawobPyC6un3YnMDq/JWCATZKm0bnIOUtVTsZpm%2BbkLBVvn%2B1o0LsfhjhBobUt0EdbfaAODOhFZ4Kic3Sb9La0TtIdZ28VcbPf2XdDo1JaI3zlFdE7mDLfdzAkPJqSt83zpBxIPjbxFb5REjoCTGHZb5IfQfDzxpn%2BF0C10j91fhGkVyLWOaL1JcbNp7gcJ0JNiS4yvvTh4hk6xdx0z1Ibf4q7wbjHLMOfbgxwZV%2BqlwWyPWMxiIOpLiMPapJfPknFq5PdK1LQlsFxmC1%2BZ/TQUjt%2BFpqchiYK2OCPjfh1W6fLxBfu7WhdBBSWvMesxWIzSv0kQmvNi3wvHkm91n2o0eKq1Inm%2BQYqB9I/HPaZWWVeaYsjVW%2BSGn%2BXLPxl2t9cG9nf8Ir7rjDPM/d2ih6CKmsrNRsft41rvDo8CTUHPq6aZbl%2BflX00VIYRvCpRdMskwvzpuehJovKltN83yDVfRIZRnXqLnPmsVXt%2BKyJFRdkm6%2BJWJ/XoEhpYdfVeoeszzT84Ibk1F3X%2BWnpnnKy%2BkjpK6aruqTZnMX41Z7vtecjMorlWqzLNk%2BDtxD6prsbTpilmfcwsJvJWUl4KlQZZpJluMaJ8YiZS1bqi4wj6%2BjxX/2J6X6SQVmL8Gu9mWzyBep6lyTd7Rppundit9ITvV9X%2Btosl%2Bbe/9ZvgJDivI/5u062zy%2BPIVlSWrAFmWlSXxlac/QT0hRe9Sqc6aZ1gcLxySrARXpJhk2s1U2UtWRg%2Bo%2B8/3l5waPbkxWC1Yqk4wzPOr7F/oJqemacOlY85mLY3pDWdKaML/uWsP0RflF5%2BkopOTwa4R3gfnw68ze4GB/0trwd71NbmDvnOW8c6SkC1Vm335d0XlGYeEjyWtD/fz0dYb/B9T6/oGeQkoOv8LeV81vcr/TDyWzEW8pJwzTc7Qu9BRS0T61SWDd0zH9QEYyW1HX%2BJBxfOXQU0jF4VeVOqLGNNcLC/X7uiezGbcoPzFKHsUSeqSk2U3enua51h/yfOxPZjP6vplutIhjN/GFlLQh3PWCea6PC4tnJbcdTyhrDVK7%2BGr99BVSTvNJb65Atj7BhX9ObkPSDmcapLbz1Q6js5B69qhLBXL9Xm9IdkMqQytj36IGaftZ4YvUU/O%2B%2BgPzJ68xv9EnbEtyS9YavWN%2BlPhCKrrefOeoKzYu1n%2B/LNlN6Zge%2B9DYTRrPh0hBncKlR8xzdV8c/Lg52U3ZqdwSM22Urz17SCH1TPZ%2BU2BZ/MbVno%2BT3pStSmWsJH8O8YVU9JFaJZDrD8WFZ5I%2BP/7g9lDMB8QcjWP2kHruGK3uEQicOz3dxiW/MUuUe2OkDMtmfRRSMb5GqKMF4muuZ3UbxNeWUK8YKdPKfazvRQp6ST0pEF9rPBOvT35btu6oi7HIt38k/yZ2kELKaV7gPekSia8ObdGaXwRejPq7O0crOs/6KKScZVXqY/Xm2Ubqx9qiNReV96LHV7bWj9sXUjK%2BZpjn6n5An9kWrflfMWbod0UYfiFFx1%2BdzB%2B8hi/WR2a0QWNOBepujfb7v2nl79JVSEEj1Mnm8TV9YnBFm8TXa4Fop4HtKtf6sfoQqWiOar41tmv6as/AtmhMdWYoylb0yzf78o/TU0hFJ9URpnncZYXF69uiMQ%2BND0VZgni%2BnMUbSFGvek1P1nP5/6B3m94mrVmi7Gwd3TnaWdYeIjV9R6260TTTXH1v9zZpzUVlfKu3Beff0bKYnEdqOte1a435%2BCs4cXibtOay0vqsvU2%2BSDv6CalpWZV3qnl85R26vk1ac4uS2TK%2BFrXXstkbG6mqp/qReaYOnjaZ33BNCg1p%2BdOict8oegmpaoPI/jY99JFt83wYarmJlPtR7ey7LD1Eyio9aJ4nQz/QJm15RWm1SVuWVusmvpCq/Au85htwfJ5XXNYWjbnYavw1rUjj8RAp7IJ6jfn94T69TRZwvNdq/nBX/tnd9BFSV034oPnawj7BCW3wDurU80rll99/XX3cV34TfYQUttRbY5pnzN68NmhJ9XilxQ4B7qFaEUt7kcqOiCzxvS84K/ktKdnee0mL%2BMpi7SFSXFXYfAD2uqcNZhD7Nvae12J9VLa2mcVRSGkb1MnmmSYW35j0f%2BgrDwfmtbh/FfmG0kFIbe8LvAI7ow9O%2Bmuor4R2tDjmfHmRj0%2B/kOImq%2BZnPHxevHdjstuxRBlybav42kX/wAE3sBX6t5LcipLxSq/7v/zTu3dFnqF7kOrUS6ZZyoINnZPbiFM7lBMtf3uH%2BxdSn8gU4gDPmOQ2Yl0gdDPxBQnVqPtM81zvGZDcRnyloO5Ui5/cjL8gg8fUGtM8Py5M7ldgvXpXtNyebXm2xvwhUl9zU5PADeyzZDbhoUrlnpa/ubM0lvdCArPVj0yHYBOLk7lNwLo65WKrH3P4PAVSeNJruoz%2BWc%2BPktiAVaHA/a1%2B3M3JDpBDVanpQ%2BTEwiTuI7UztL261Y/PaNnEF2SwLGy6le8Z/ZdJqz5tfO/K1vE1KML3KZDDEfWCyRBs24HkvQMrqVC%2B3rp69/4Iu7NBliGY2RTHmeQdBLayLrSy9a/%2BLI0XYJDEHtMh2Ew9WQcVrQwdfjjKz/21HPoFksitMskwvPBYkj5TuVywvSTKz9MiRcPoF0ii6TqTDAP1p5Iz/NqpZEaLL9dd%2BefpFsgi3NMkQ0NydrrpW6n0ihpfo1ghBYmYbRbwQuEDSYmvit6T0qIlnNb60SmQhl/dYJyhT3BWEoZgaXWhLVETlkd4QIRELqgXjDP8Oq858bW%2BFQisqo%2BakqMRX3BSgB1anPhK1wYaV0VPaaflcMADJDJZNT5zb1zhmoTXeUsg/dboKcOK8ukSyHUHM17H%2B4h%2BJvHx1TFGfLk2a7u5gcFJj4hrPFMTXOPlUMd3YyQtj2QTX3BUgHVYneAKXwll3hsr7V8ii%2BgRSOUFk2n6bg0Jji%2Bl4tb6GGnPaGySDdl4jVdyFE9IaG0vhirujhVf7qJ8PrKEbLrOMUz2fJDQ%2BAp0vClWfLn6s0YK8ml6yTjABiewrr6NdZ/GTHSXcwODfKqMN20LJvBQ5pL0xltjzxL219iGHvKZ07XNAuy10CqDWfjyG%2BgMyOeS8ZvmxAVYSaVylUHycW0QnQH5bPSebJsA%2B7qyxCi56B36AlIOwnLbJMC2KJX1BsmPslE25HTScFupYIK2RFwbqjBMr2WVL%2BQ0Vn3VIDVB78Hq6z4xTP9XTjqHpO5oet8gNUErOTIL1hou4%2B3HTqOQ1UdG54MdSsRaxLQpyhbD%2BPJHsugHSKpGXRo7MSGr6VcplcYZpmmb6AfIak94dsy0NQnYl35toK7EMIO7Nn8Y3QBpeWMf0pyAL5rrK0NfM85xnr2yIbPrwjE/W349%2BHS8pf%2BPKOdXflk7jcOKILEMgzPC8g7EOwALZJplyY7QB5DZHO%2BRWEkNH8ZZdsfGapMcp308IUJqs5u%2BGStpsKcsrqLfDt1ilqW/No0ugNSeVB%2BLkfKs3ieenZ5OhSpN8zzOEyJk95K3JtYg7PvxBFhF6JRpnqK7uP6Q/SHRG%2BsgvmPFcRR7wnQG8coQLDKK6w/Z/VyN8V3YQH2W/QfEOpNXzF/gU0s4QP2C8KWoCRsLB9gudJKyzjzTUIZgcIDuTU3RDzs/4LF7CPrDgSECudqXc/HhAEe80V83f0u/0%2BY0R2XoVoFc5dlcezhBjLn67h6bn6ysDT1fL5Dt7ONcejhBc1U46q1qZtDeu%2BYhjSUCubrzMTMc4uVwbrTh1vX2NuZYFXpCJNsuHztmwyE2qNdEuYf5F67eaKOw8YGtItme0XZx4eGQh8SX1GjfXv5Wn2G9rJKCXkL5urBlNpyj68Fow7C8BuvnMpxQqoXyjfJx1eEYF9Q5USJsrvXVHKdCFfViAcZ7ZjjI0mifho3Ju81qOZNCb7kIMKCFZU3RttIe7PmztWKq3%2BwomJNHRDjKZPWN1j%2BWFXewtprjKuUV0QDjDgZHqYr2adhI/Q%2BWIqwiXTTnKB8HW8JJatQ9UW5hhZbWS/1d4B7RrF14DwZHce9Tx7b%2BdYU%2B1kIZkwrWimbdRYDBWfzhKF83jync%2B7l4EdvnC2e9WmOpFJxlstqp9Y9P6X2EC7g29EfhvDdFWOwLhymNtkHHoUPC29RfLFglXlk%2BJ6vAYXqqF1r/OEsfLPr3HV%2BzUFlRERccDhuFRX3bvLj4BbGp%2BvqCKRYqe/wGLjicdgvzdm794wueY2J//bBys4W6jmucbgmHqYl6HMR9gmcZ7RTYbfS/TNO6cMHhMEu9UZ4Gu%2Bd9KDLPkVZXYamu8vZcbzjMWPXlKL/O1XsI/G21MsVSXf1YjQinyegabaa%2BrEFk/5ublbcs1dVf%2By7LEeEw%2B9RzUX7tHpxg/qfvhUosVXWaE2ThOOfUa6L86h%2BprzD908pP6q3VVZvPHQwO0xzjZPSjq80eEqsbh1is6zhnNMNxAZZ7MOrvZ4KfmfzluoITFus6zzMiHOcjdVnU3wd4rjdezzFP%2BGPm/5QdGcYFh7P41ejHGfnz8owD7I%2BhNKt13a2144LDYbxPRv99hn6fcYAFrAfz2VquNxwmvCf679sOBA130q5stF7XJq0/FxzO0hQjwFxjPA3LDP6u4jXrdd2Uz3IpOExurGPRXXMNj1t5bYiNyh6PsEM9nOWbB2MmLS5%2BIfbfpd9jo7JpEW5hcJbrcmMmXe8xeBnWaCfArtzC2FwKzgqw92OnHShMdICd5hYG7mB/cyY4Mmba4fdsVbdZW8Q1h5PGYD8zSGzoFjMpYOsO5loeqWXJLxzk/SqDxIH6U82JvYO5urCcA05Suscgcbpnpj%2BxdzCX%2B2z5MK46HCM8xyj1gGdbrACzeQdzDdJGcdXhGLHWIv7VDP1crEfEe%2BzW2D7CBm5witnqEaPkS/rAGCl1tgNsEVP1cIzRXsMt2jbG3Dtge0fbdQ7VdnPh4Qy5Bw2TP/cciJGSmW6/0lp2cIMzxNqT42/8h2IdeWnje7D/ekjUsoZx7eEANarJiZZ7YwZYaK3fdrU5fBgGR1jqzTAJsL0xEtYVXLRfrTu/nB2mIL9l4T0mOY7GuoOdqsuMo%2BJdvAyDA1xSv2P8nFdWHGuSw19pfdeb/0c/bRqXH7JrKm02zrAxODNWktW96VvEZz4nXkJ2T3pfNpmomK1/K1aO6t4746l7t7aZDoDUNjblmk0E9om5VMo1rDLQN57as3kZBrm9FJ5tlqWhMPYs4yplSzy1n/dl0QWQ2Gj1pFmW6Z6ZsRPrA5lx1T%2BKL8MgL/8%2BdZ9pnt94jJKXFKyLpwXD8vNZVg9Z/VDdZ7oSY5bxGStpgfFxNeG72ib6AVKa/b462jS%2BblyY190wwz2huG5h7trIeboCEjoZ7jrWfCXhgKDJYehbG%2B%2BJqxmnfY/TF5Bu9DX7oHrdRvNsI/U1Znl6hb4WV1P6RW7y0yGQSsZSNXxBIAxX6L8xzbS1cUh8jYlk0yGQyuSwuq9ZIN9M/YDABoZLev/PuFrzVR9baUMiw5vUqhqRjAOCBzIEsj2Ynl4ST3vcZ7mFQRrLPlObNnQWGPWcaTAff/3VT3rfEleT/qRxoBEk0amrd47I02HGjMLCPoKTD2mZga3xtIkFU5BExgjvz46IhE33A/rq7sLF3h/KjOe7MNcojW%2BbIYGag%2BZLo77g/5YnuKKzhYIvx7fmd7mWQ%2Bcg5Z0rNdve5q%2BuX6wv/rOlkuu3N94bT8tqI2PoHqS42U3mn6ZcsXGNp/Bpq//e1wXiehl2nkX1SHXNPxOKrxlHgxOetV76JOWqeBoXYZoDKW6E95J5prLPggs/tlN6dUXo1jga1y/CNAdS2svqaNM8/j8UBmfeaGtloL9vQWa9/dZN047TRUhh/tKD5plm6nlltms4EVoSR/vyWc2BVDZZNX1AHHebPjOOybz6X4TieN38eD59hNSVUfozsye/M3nFK%2BKq41T6fPt/vFtjxS9SVyfjM/auWO85dH2c32WdKLD/kHjaxxaJSF17zA54WK%2BvLov7u8deBd%2B1PdGxnyMvkbpKTQ54WB/sloC1FPfXBWx/uJJ1ll5CqpqtPmaY/lxecUYi6pmnPG/3NjiUTX6Rsi6pdxim/9rz54TUk7ZTedHmn/bX6Cakqie9hsk9RD%2BtNI%2BwuvRquwE2iH5CqgZY2Ci1e%2BHihNV0a6iXvT9cpHWhnyBjgPmPBacnrqrnC9baCzAfW/xCykfEGn1mIuuqS7f1Z6cjfHSJVHVENdgFscHTPZF1rVVsHcp3mjsYUlZzU1PM6fOyxN7AXK5KWx%2BucAdDCpusdoqVNDKYkdi6tgYqbGyBc5pjVpC6amLewsYcWpzgAHNdVuZZ/6NFBBhSehT2g%2BgJzwVHJrquvoE3rS9J5D0YUpl/gTf6YSrj9B4Jr%2Bxe5WKz9QBz00tIXcvCVVF/P6PfmfjTg%2BrqLM9zsBYRqW1D9PPOx%2BmPJD7AXlEsfxnWnk%2BakdpGeM%2B10SOiyzV//rUW/6Kc78GQ4g%2BJTeEo84XXJyXAtigWD1yZxhfNSHWz1SjDsBvzOiTjBNe6jtby79bu5iBZpLbmsdH2RjxQmJGEup6wuJyjfTnxhVTn3xdlouPpYDICbF3B25bysy8iZLAgvKHlT2X6imTUlNloZb3Uoz529oUEujeV1rT4qfPebsm4hf2jcsrKE2L%2B3bxnhgSOdC1tucjiKf2fkjD%2BOaVMEc/s5gQ%2ByBJh3twWEbas295kVLS9TjhrBgfwQRqX1BF3tLyFrUlCPSfEnxEf5QYGafhPqj1b/DSxeHri61ml/FQw5/LyfAZgkCfClqqTv/zLuMKGxFeTViC6dUA/Dn6AVBZ4WxwF8XQS1kvVN1aKZdyt/RtdAqm8H/7OlycOD%2BhPJbySIWKzHLt8tXQI5HIk3GIHgZePehI%2Bj9frsNBqqRvKGYBBNp3UPV9%2Bu7zec3Rjguu4GFpnnsn9ToQBGOQzuuVU4hlPQ/fEVvGKYh5g7iIf8QUJuataTnT0CC4e09YBdnWR7xn6AlIqbXrhyz98rDdktG2Auct9z/CVCuQ03Lv0yz80/1Kf0OxvywDLj7BVG6TVU23x6crnI/UDy9ouwJ6J5PenFyCtbVUtDzXatka/b3jCyr9oHGC7ffuX0wmQ2GzvnhZPhBkj9QcSdg97O2Bw2KX7T1ot778gt5Pq2JY/DQg%2B0DlBpQ8xOChseXsti%2BsPyWV4W28zNVL/TYLuLB23x0z6brn2DS4/pPdR61tYxgf6yM8TUXZaIOZi30G%2BSH8uPhwgyob1GRMS8/1lWijWvlKjtNpFXHo4YhTWcj3HFxF2INgnEQEWY3Pf8%2B19/ZjegFNuYXOi/DgxERH2lnJz1Pgq9/H5Fxyj6v1ovy4sjn/RVGUo2iz9IC3C4yGco6e3LMqvzxavjrfg6lC0HQM2aftPc9HhHBneydF%2B/lifsC2%2BgqNuPNpPy2L4BUdpui7qzx/oH8dX7vhA662z%2B/n6ccHhsEHYwag/jzmUNzWulfXbO0a5f43iesNhlpZG//11fWY8xa7rfbHlT1nEF5znh%2BEYg7MDwXFxPSG2/CVH28TVhuM8GSPAXNs8A%2ByX%2Bmngnha/dNFymN%2BA88yJFWCuXxfbL/WewL1f/qG/jxP24ER7SmOl3Gl/Pcepwy1uYKcjd3Gp4URVuTGTji60W2iv0NYv/1CUz/tlOFKM92BfGGD3GbGk5QHNXbQ/caXhRGXq5JhpM/Tf2noVVlIXeOhLP7h9WezOBkfq6Y29rHe9zTNXlijzvvxDDucTwaEWvB87LaPY1kT9T0OV9V/64Tz7b8ChxkT9HuxvDnWwUWT1jpab3fTX2J8NzjRanW2QetRGgFWPD61t8VOWj1fMcCR/eIErwXew95QpLX%2Bq3c8UBxxpn%2BEN7EYbY7DLyvhWn6kUcYQlHKlG3WP08DYuaHkW8RalsqTVj7XvcKnhQJ1f8hpuvXFG/63FwdMkJbN1fLmyIozB4EAbWh6v0sJgj8XA2BLKrI/y825mEeFA/tJc4wwNh6yOvzpG/f08X4LBgZZ6pxpnKP6xleLq31ai3r%2BuKDrLLQxO80bLY9Bb6qPPslBcSWaU%2BcP/vIXt5nrDWaaGq0w2ZuuQZ6G4VekFV5XEfBh954bzXHE4agCWGz5nnOO5ws/Ei7slkL7KIHmaj89V4Kj42qcONMkxUr9etLS%2BzytDPjXM0Y/19HCSyeo%2BkxwZhQ3C8VXXenlUS%2BX5LJeCY1zyLjDL0kMfKFjY10Khm%2BvNMk3T2PQGTjG79H2zo87H5O0VPGDlvdD8UwLZhrLtKBziyMHSc2Z5%2BugzxApbUvCLh0TyufuxLwcc4Y4F4UtmebblLRS7gfVSet0vVq07W%2BvPxYf0/HvUTqaZfqc/IlJWfaWyRLzmd8525/JDdvvUj0wn9G4vXCxUVqVywkrVkSIuPyQ32nSC/ooBnj%2BLPR9erLdS926N88Egt5PeEeaZzngeEClriZXnw7/YrB2nCyCxyd6XBF74rs4rEyjrxdDzVqt3Z2vT6ATIyj/WW3WjebYV%2BgqBLy2rA/Ott2D52Xy%2Bboas8VWj5p4zz7ZRbxCJr4qWBzyItYFj0CGr2d6mZQLZDuhCD4jKT201YpP2DXoCUsZXuHSjQLY%2BYg%2BIjTvS7DWjn68/fQEJ46tJKL7Kut0m8gw3KbTOZjuW789fRG9ANmPeDx8RyfeA54xArpK6jrZbcjrCRqSQzbJc72yRfH2CH4hku0pZab8tu7UcOgRS2ValjhXKmHdUKFtlYzyt%2BarWji6BTEaoM4TyDQh%2BLJQvPTOe1lxdHuHIZkjkpDpa6Iv928UeEF2u0KS42sMwDDKZrI4QyrftaLcxQhnXKmvja9Fuvm%2BGNGq8L4ll/L3eR2xrmsvK/XG2qZ9vELvgQAr%2BcJPYh47jgh0E/9FPCsXdqvKzBBhk0HxQbILe5ZpYKLjPTSICbBEno0MKJ9VLYhlH6nNFy7xFeSjudo1iw3pIYLK6T%2BxZbL3n18KFxj3JcYW7KMKSKaS6mnCuYM5Dh4aLFxvnNP1fDIrUDqODkNoDsKpwZ6GM/pn6tyyUW5eZgMbt1obSQ0hpc0xOif1P39JnWik3vqVSf5PtYwMBpLIL3h%2BJZVzv2dtspeCrEjAIuzIMy2cfN6TyA2LXg2IT78MbPNMtldy3cUh9AhrIgg6kMP8e9ZxYzs%2BCPSy%2B9v166KZENDHLxw4dSFWd1JNiGecGB1gte2vvnYlo4mkfe%2BAgRX0ebhK7LWV4FlsvfadyKhGN3MSnYUhRS73PicVXcbfrrZd%2BSqlMRCPd7FeP1DTZK/aA%2BHmDvt7Gutv6nb3nJeYW1p%2B%2BQgpqOrhRKN99%2Bu/sVZD%2B2kOJaGc%2BZ8siBY0WOAXsC330Ac32avi7gnsS0dDN2k30FlJNjfeHQvlmBSfarmN8KBFvm12Rx%2BkupJoq7zKhfMWH7Nfx7mvpiWhqbTndhRQzVn1DJJt/YeGsOGpZpWSmxd/WoT76C6klI7dUZGJwW4PgLm2xPNH7lvgbO03rQo8hpWxQRbbJ7v6B/nR8G2OkZYa2xN3YbfkcLIuU0vy%2B0FeWT%2BsfZMRZU316ekn8g7D9dBlSSU/1gkCuj4OL46/q/sD2uJfVZ%2BfTZUglQjewRwr3JmLjtFtCcS%2BZyorQZUghb4hMIT7SbeELCaltkrKEAIOT5ArcwDIWFs9KzIci1ZVKnBMdWWfpM6SO2d7Jpnm2NXj6JOhDLH/fitCquEooYkE9UsiCcI3p/es3wbmJq7Dkk8at8fw90/RIIRnqPtObzu/0kQmtM7T9Yft/vIgXzUghj5lvxNFH/37nhNa5MjTe/h8f19g1AKlzA2t632z2/YynoXuCa52kvG37b9vzGgypY7bpYbHDiz/snvBqxxf8s90XzgzBkEJ%2BoJrcwKZO9JQlvtq%2BFQU2Jzp2s2cAUoc/N9c4wPwz9bnJqLhvoNHeNlP7WYmI1HFEfcw4w0Brm9CLeytk60CIQT5OgEDq6GQyhzj8UF735NRcf7HAxpopf%2B1Z5hCROkZ0NU7/zPN60s5Gfj70ouW/mab9iU5D6mi6zjD57z2fJa/uW3ekW93IzV0UOU2nIWV0Ntlt9LZu05NY%2B9bQLyzu0fEPrOJAKrlg/KnlU/rv/cms/u2Cf7RU/q5IESMwpJCeXqN/4GM%2B/DAjqdVfWxGqtpK/fWQ5fYYUMqfUKPV6/Vv%2B5Na/1dKixOOcv4fUsuCg0Q2soXBMkutP26mIzySez6%2Blx5BSmqoMEqfrK5LfgvT5fYUfEH2L6DGklNI9BokTPG0wo7BWmSSYcxAPiEi5APtR7LTnuv3an/wW%2BLe/KZZxuVZ7Nx2G1NL1ydgxNEN/pC2acJVyWSiOazVeMSPVhOfETvusuG3aUPGJSK7N2rd5BYaUC7AnY6flTfS3SRt%2BqvyzeaabItnEF1LvEXFpzKQX9D5t04aHGs33%2BnUXnb2a3kLKMZhFHBy8s40aMUUxPRBilHaczkLqORj7Pdji1W3ViJuVr5nsz7HLl8UDIlKQwUqOvANt1Yi%2Byk6TB8TyfGbokYoM1iJ6RrZVI9LSK4wz5LDPDVLTZDXWcvnh%2Bow2a0Vlo2Fyf42N2pCajqixDn54RF/fZq3YGTIag53PL2cAhhTVNdab5pFBf5s14oRitEdidoQZeqSqqqYYCQO6uf7/CLDdrPFF6urpjZHQYW9bBljsPUinRdozg4gUHoRF33i0eWFD2zViZyhmkn//2fP0ElLXwejnx2bktWGAZdbFjK8c7VH6CCnspLc5aoB1a7P3zK7qxpibaLfTcugipLJz0Q%2B4bMsAi72S43QknxlEpDT/S%2BGM//YAmxcjJTvCAAwpbrbaM8qvzW04Bou5mn6Utpv%2BQarfwt4/GOWVchvOIpbUzY%2Be8G0fS6SQ%2Bi6onaL82uFoW9W/VTkR9Xd3/v6b6B2kvnC0ry6PtdlKjl7R34K5i9gGEVIYEY7y40hPG9W%2BKv0XMQZg7egayOCIuqH1jz3029um9idCK6MtK96t8REzJBFtA%2B1xbfU92Pzt0eLrfOQu%2BgWSmBPtVZinbQJsZe8tUX5dvv/sNPoF0jwjRlnxW/hZm9T9WtR1iO19u%2BgWyMLf9M3WP37YJi/CHg79JMqvozjqHDKJ9lXY9w%2B1QcVp8z%2BJsorjGS0rg06BPMZGeUYc7Jme/IpXKU%2B0/nGQr5aTYiGTZVGWSz3SBltnp21vfKjVj8v3R96lSyCVx9SaVr8VP5D0aucpl1v95s72PUOHQC41Ub4KW5z8QVh6elqr3/qxhB7S8VeFz7X87WlPsjduW1KwttVvm7XNdAeks7H1DqRn9B7JrXNdoPVWAbs55gFSym21%2Bc1zC/cm9xZ2T6jVdojTmECEnE56p7b8aU1yN/d9MbSkZfmLzuYTX5DSHd5WOwdM159KYoVpjTvubzkSLIp8l56AnJquazUuK07maqmdrbe6yfYNYgAGSV3Xepf6mfrGpFX3sLKz5ZEqOdpmP/0ASW1QWw3CziVvMUd1emPLRYjf1h6nFyCtC95WE/XLCpP2jFgZ%2BrTFL4uYQITDBmGumcHhyalrS6iyxdPg%2BfyzxBdkFu2osODA5NTVuKPlL9ka8xuQ2pNRNpfqlpxnxMzAqha/5Ghd6AFIrZPaes5wTVI%2BCpuiPNFiBvE4m/hCdkfUV1v9dmfw6cTPnK/qXdliBvF0pIjrD8mNCY9o/ePexD8j3tqY3nKGvihymusP2R1c0Pq3p/XvJLiW%2BszQW60GYBxjCfntCbd%2BHJwVXJPgWt5WLrb45byWwwwi5LcvymmynRcvTGwltxQ83zK%2BzuYTX3CAH3ijTGgMDt6YyDrWBSqqW/z0OKeowBHGqlHOQ1%2Bvr0hgFf%2BR3niqxU9dtFFcejgjwGqi/Lp3YeIm6h/KLPhai5/c%2BczQwykB9vP61r/20MckrIadrQ%2Bz7KexCz2c4VyUN80u15HEPSO%2Bp0xpGcG7tBwuPJwSYG9E%2BTUjYd81bwkMcbV6QCxnBhGOCbCPov08M1iWkOK3Hp7fap/sb2vHue5wdoDN0hPyzcqpusZWu7Sd1mq57HCKZdEDLKNwQgIKf2h7Qav4cmX5eECEc%2B5g3qgB5uqQiE3qK5UXW/3Wn1dg4A7m6qGfibvsJcqJ1q8AavO56HD8GMw13PN0vEVfVnq1/vE456iAALsiryHOxRwXQ0Oi/JrNDQzOCrA3oid8/8P4Cu57uNUu2Vcs93FQEZwVYC9HTxjsuT2eW1ha4PC1Uf6%2BH6vo4Shj1SPRE2bFtcNv9Y4oE/Qulz%2BSxSWHswKsJnrCHfEc1/zg%2BNanPHxhk9aOSw4nmazGehDc28F%2Bqc%2B3PuXhC%2B4binjJDEd52hsrwD4rtl3oe6FeUX9vpz3KUSpwlNExA%2Bx3HrtlvlIwJHpCjsZW9HCWPV1jBdjTwddtlhmqeDh6wtlsLjic5eA3Y6Wc0R%2BxVWJJY/qq6Cn9tX/lCRGO0hzeFytpXLCHnRKrKwpixJerX4QpDjjLbPWxmGmekXZKHF%2BwJVZSEVvdwGEuqbFP28sbYKPASb2nxEpyR/hQBQ4T7Xywvzlq40XYyt6ZMdN2cRwYnGZp19hpe2%2BzXNytge1pMROPa7uY44CzxJ5EdLkaLAdYWpQtOP7L43ypAodZFj6ZwAArqVS2GCQzxwGnuaBeSOAj4hPK142S8x/ngsNZ5oRfiJ240OIkx6remWlG6ZGhXHA4S%2B5Bg8Q8awH24Cd19YYZfAQYHKZ0jkFiobUXzUMCK40z%2BNjQF87yqrdT7ESLS6WWKJOMMwxix2w4zEnvstiJ1hb7bg2NN8mxiwCD054QqwwSn/YMFy%2Bpb3pjNQEG/L%2BavT8wSP1xsYV1FzuVV5pNsvwrYzA4bAimzjZIbVgtXtI8ZWezaSYCDM5SVWoUFRZ2lTqVXneteS7eg8FRatR9BqlW9kW8J3SvwONkhJUccJJLsbZE/IsHCseJFrQyxiZSLbBUCs56QgwbPSGuFj6luW/6DqF8%2BznZEg4y2/AJ8fag8PFFJ6Lv4ttKdjkXHc7R05thkDrSI/qEWKJUimV8/CwXHc5h9K2ly18s%2BoRY8otQtVjOob7Puepwik7exwxSx%2Bk/F3zNvKXgRL1Yzl3aM1x2OIXRbhyujAOF3cWKSdveKBhfrs997CoFp/hzeI7BLWqjPlOwnKuUlaIB5trfnusOhzipTjVIHalvFCyn7k3xOrOY5YBTGC6kL%2Bu2WHCT60nKLeJ1DvVx3eEM13jfMHhCHBwUnaOvq7BQaX/tNFceTtDc9DOD1DFHRfeTuqhcZaHW874cLj2cYKz6kcvoBib4LXN9%2BnZL1daWD%2BPaQ353HOxqNPWX1yA4AvuacrOlzbA54RIOuYG9YZC6RvRDleqKw9WW6m1HgMEJqroa3XgKDwgWU61ctFbvco1BGOTXSR0YOzFjpr5esJydSonFmovKOeMS0jvYZJA4Xf%2BNYDFp6RX1FmvexEQ9pDdZ3RA78Y69njGC5cxTXrFatVtrx/WH5AwXcazQe4hODL4dsl53hK%2BaIbmT6suxQ2h64cRm0YK2z7deeVZkGD0AmfmX/sDgFvW7A9OFS6q8bL32d7Om0QVA0sKbSwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQFv5P/rypxteuHElAAAAAElFTkSuQmCC'/%3E%0A%3Cimage preserveAspectRatio='none' x='-83' y='735' width='1280' height='174' href='data:image/png%3Bbase64%2CiVBORw0KGgoAAAANSUhEUgAABQAAAACuCAMAAABeFFD8AAADAFBMVEUAAAAAJRWEhISsrKwHE1IAn8BISEj89BkZP3wAeDn9/f2Gsi0AAB8XPHempqb6%2BvoCk7nf4CAAdTahwC3%2B/v4BAnXm5uZXV1cwjTU7sZkZP3wAdznR0dFmaGoYGBgIfKgRLFcDCRKqwiwBAvQAYS7y8vKCyGnPz88PKGcJfKn6%2BvqFhYUARB3AzicANw6zxSv17BsXSYPh4eECnL7s7OwAiIgjiTYaQH0YRYFlpDALIJiKy2QjI0UCFTAaQHwWPHrc3Nz98Rmjo6MAnsAVNGdcvYMNfTcYRoAAUCIBGE%2Burq4RNWgAoCLLy8sGN2N4eHgOo7a12Uj09PQAcjUICAhycnIZPXoAM2cNZ5khISGcnJwBBAkSMnP09PSl1FKYmJj9/f0ZPnsEJTMOR2t6enr8/PyxsbEAcQAMJEwAYi4VNmwLHDoFDR4GTJjt6Bzd3d1%2Bfn4FejhPT08ZPnzBwcH6%2BvpAQED%2B8hkAEwYROHWevSz%2B/v7G0SYQMWSLi4sAcznDw8MAeDjOzs4QEBGyxSsdPXYYpq9vw3b8/Pz9/f0ZQH7U2SIFEB5FljO0tLQKGTFOmjJ8rS8hI0gPDy4YPnwWOHAZQnUtLS0QNXIKHTft7e1cXFwmJiYAdzj5%2Bfmf01WxsbEFiLEoQ4YAnsHCwsIHFSwAfTlNt4wAARQAIxAZQX4bhDYWO3RVVVUKNWoVN3MRXJHf5ywTOHANDSYEirJ/f393d3e6ySkTNm7W1tbE3z4aRIAIKGQcQH%2BzyCupqant7CS6urri4uIKJ0wABQEIIUkJFzASOnja2toGEiMRNmkRK1UAeTkOH0AUOngEDSEZQHsZQXwWFhagoKAATxYTOXkqKioUUIiQkJCBgYGMjIyAgID9/f34%2BPgxMTEcQXu7u7usrKzy8vIHESAfQXdRUVEAAQQWPXgUN3UdHR21tbXY2NgiqakNDQ19yG0VO3oJGDEAcjT48B0OJVOUlJQECh8YP30LK2G0tLQaQH0XPXzI0SUHEigUNnFsbGy1xitYcuCsAAABAHRSTlMAIEglJLIDsu/%2B1PAClRiO8%2B2Fq/4CIyvv78/CDA0B7mUI%2BgRLbrcwSqK0BwryGMX2%2BE75BQGq/vnvOO4BB8WjT8RpxH3v9MAsC1hdLxIrL/fxU6YAAm0C7gIrBDssqBSsrghFDY8RARlrbUIPFvALSvoHsEdxAf4GcvcWsC0lDynFagH9XPLtcS%2By7QvuCyO47gMCknY9BUobRwQDskrwMrh9/mgOT%2B4BC070VQs8YO33KAHwBgH5JRTxsB2ysy35PRMrAA4chCoVMUyyDWQJqHcBBR84AvMqDQMkTjEBiwwQFSVCDgCKSQYxau8B7lARa/seJQNwNEafhvEPVQL%2BOF5saQAACAtJREFUeNrt3XmcVVUBB3AKq9cjmqyX5agoli1DC0GFVo6WZFFZRFhNozUWU7aJgFSCLTaIAxG0uJTxoVUlE7BdbdEsDD%2BajZaUQphWI6QoQaOpfJpkWJzlvem9e%2B%2BZd7nv%2B/0TPjPnnjnv/j5nf8OGAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAmnX9vjKnjkuZIJR%2B5sJGh9bpvHlO%2B57w6gjNeHMAXDjiTTLvhj9XKv%2BX75CbEUn/u6mglT71xQjj1Eyjm8IO/Xb6zt368cg93J2/eEU8k2858TJUC8Np4%2BZe79FVRS74uF/BFX/mQsCvusvHlJ%2BD%2BaUnA7hEzZES2HfDdquTfextj9bM2ju6MXPRNAd/y3MldD8q64l7ylPIT8J6rIyTg50Ik4JxjZUS2PfUTVci/J8WJicbnfSRG0UtCdgBzG4Z1nSTr4g%2BDJ1%2BZlgQ89JkyIts%2B%2BIGhD8CJ0V%2BjWe8bHafkL48M%2BY7PeqSECyVgKe8sfxg8%2BesREnDfIAn4ecPgTJvx7CFfAN4YffB7QsyyHwjZAZxw%2B44itiwUdSX86UdlJ%2BD4eyNMBO770xAReIQEzLRjh3oh5AcxQmjW5W2xyu4I%2BoLf2FPGFmvBJVUwDL44QgKeEiQBR5gIzPZS8NBOA340XifsFz%2BPU/jpQV/vD%2B8sZHtO0iWwGjw/wlLI2CAJeOj3pIQETMj2uCPEXMe26KX/LmjvbEnn7q02h4u6%2BMPg%2BRGWQsa%2BMMxEoJTI9FLwEO6Avj2BxdaRJ0cu/5CQi8BH7p7lvNYouPR%2BmIODLoWMDbIh0J7obLtoyALwkGT6Rnct%2BWG08kNO0DV27Snm1/qAiawGRzkVEmQ7jInAbC%2BEvH6I8u%2BTSU2P5R66LtoTrAr3Yp/Tq5hXmAccZBhc/qboi69OSwLOMRGY5WnATw9J/j0rwf5X7qZI50EWhUumt/cuZ6UETGQ1eP73U7IhsHuePdEZ9rbfDEH%2BjW5M9C3KnbslwmUIlwR7q1f22e14i5gbbBhc/kTgWyNshwmSgHYEZtm/wifg8sQ3odRPrPxOmN8H65r9rU85zV/RB0xkGDz53rRsCDQRmGEzwk8DXh/gPao/fVKFA%2BHOYLOA/WclV5VMwFzjSefUejxWsBr82q0p2Q7TPccwOLvTgC8KnH/bwqyM5i6t8HKEdwRaCK5f1L%2BkDw182FzjgxOv37b6S0H342RuNfieyicCtz4cZiLQ0eDsTgOG3Q/dHOyMbO6%2Byi5IeGOYx5i1fLCDJ49E38hVl79s9/9MslOwkmHw%2BCvTshjc/UUJaBowit%2BG3IK8saJBcJjwuX9gSU/vuX0w13H/eRc2Nzf3Hqt/S/ztGAaXfyzklWlZDHZHYHanAd8UMP/CbgvJba/kWc4K8gy3FPsCkvtO2GdRV9eAf59kgaTSYXCEicBASyEOxmV2GvAFwfJvdeA3fkn1TwQfVMF0wF2ib5fLyh4G71/5ROApYZZC5tkPk9VpwGB34HcEfo/Oq/p6dK6CL6n7qg5ghGFwhB2BYU4Gd3ePcCwkmy4KNA345oWBPVDZcZCjkn%2BCo8oPwOVnLWSPnz3/ceV69xMqdsYvg3jay28gi6rxFSEAAABAfG0/SZq/KbBXWLquvSVh7WP8WYH0u/nO1kLipqSiaqNGaV6gtA37NSQff4WG21JRubnrN2hhoIT//ipE/BUKyzpTUb1lhdMer5GBYsaMCxN/hZa16ahge6HwH80MDLRiSqD4KxROTEcNm1oKhbwEBPpZev6UfKj4S00HcEVPFT%2BjtYHepraHi79CYXo6ZgCHreh5mvw12hvY47ig8VeoS0n%2BDXvGzufJX6HJgZ2mtQaNv0L%2BwLTU9LTdTzRcqwM9Dvps2AC8OzU1bd%2BTye/X7MBOfw06BH5Paur56AmXhidrdWCXl84OF4Ctaank8b1ivmG6Rgd2GbUpWATm70hJHcf07uc2dGp0YLelt4aKwLqU1HBd382JjgUDj2qbVhdmLvDH6ajfY/sNzd3QBfQ2vC5IF7AtFZVr7/9Y52twoLfjWgIk4NxUVG3ANYezN2lvoM9AeG5rRmcBB9710K65gb6aFiQegWtSUK3FRSY4D2vT3EBfm96S8EC4bkUKArDYg61fq7WBfm77c6IRmP9U9av0jaJP5pJ8oIg1Sd6P2lr9FdfvlLitXx8QKGK/BLcFLq56bUrt8FlQ9m/YvHmqDwXUis6mBYlFYPVPBJfq0ObLWqGZfuCau1sa3uVDATVk5rKkBsJVvxSmZJbnrxrsx/5wx1VvaG3J9/x0q%2BEy1JZbT00mAluq/KXkxw%2ByRPPvoj8xbd2pr6lr6Z2bw92gALVmzNH5DBwHuaZQbgLePPMfz13W3pofUOt2%2BQc16GvjEojAlup%2BJ/m4Qbfp7Bigj2pq2jT3xPV1JXu8vk0JalLnpgQSsKrfDtw2%2BDUP%2BcV3XjD7/2x9nK0DCLVpc34vXwhuiz2TmZ/pYwA1GoBJHAz5ZzUDMHaCT9EBhBo19bAkFoI/VsUAjN0B9CGAmnV0EgvBVdxHPDfus1/gMwA164p8Aqp4L%2BBfYj5662KfAahZTUuTUL3nX7v3PjoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwF/gfM2RQy7bvODMAAAAASUVORK5CYII='/%3E%0A%3C/g%3E%0A%3C/svg%3E)
Garantias do Seguro: Invalidez Permanente
Total ou Parcial por Acidente:
A cobertura de Invalidez Permanente Total ou Parcial por Acidente
garante o pagamento de uma indenização ao segurado relativa à
perda, redução ou impotência funcional definitiva, total ou parcial, de
um membro ou órgão por lesão física causada por Acidente Pessoal
coberto, ocorrido durante o período de vigência do seguro, limitada ao
capital segurado contratado para esta garantia e observadas as condições
contratuais deste seguro.
Após conclusão do tratamento ou esgotados os recursos terapêuticos disponíveis
para recuperação e constatada e avaliada a invalidez permanente quando da
alta médica definitiva, a seguradora deve pagar uma indenização, de acordo
com os percentuais estabelecidos na "Tabela para Cálculo da Indenização
em caso de Invalidez Permanente Total ou Parcial por Acidente“.
CAPITAL SEGURADO = ATÉ R$ 10.000,00 (Dez Mil reais)
Não ficando abolidas por completo as funções do membro ou órgão lesado, a
indenização por perda parcial é calculada pela aplicação, à percentagem prevista
no plano para sua perda total, do grau de redução funcional apresentado. Na falta
de indicação exata do grau de redução funcional apresentado, e sendo o referido
grau classificado apenas como máximo, médio ou mínimo, a indenização será
calculada, na base das percentagens de 75%, 50% e 25%,respectivamente.